• 2023
    • Cerqueira, R., Moreira-Costa, L., Beslika, E., Leite-Moreira, A., Silva, J., da Costa Martins, P. A., Leite-Moreira, A., Lourenço, A., & Mendes-Ferreira, P. (2023). A Minimally Invasive Model of Aortic Stenosis in Swine. Journal of visualized experiment, 2003(200), Article e65780. https://doi.org/10.3791/65780
    • Rabussier, G., Bunter, I., Bouwhuis, J., Soragni, C., van Zijp, T., Ng, C. P., Domansky, K., Windt, L. J. D., Vulto, P., Murdoch, C. E., Bircsak, K. M., & Lanz, H. L. (2023). Healthy and diseased placental barrier on-a-chip models suitable for standardized studies. Acta Biomaterialia, 164(1), 363-376. https://doi.org/10.1016/j.actbio.2023.04.033
    • Juni, R. P., Kocken, J. M. M., Abreu, R. C., Ottaviani, L., Davalan, T., Duygu, B., Poels, E. M., Vasilevich, A., Hegenbarth, J. C., Appari, M., Bitsch, N., Olieslagers, S., Schrijvers, D. M., Stoll, M., Heineke, J., de Boer, J., de Windt, L. J., & da Costa, P. A. (2023). MicroRNA-216a is essential for cardiac angiogenesis. Molecular Therapy, 31(6), 1807-1828. https://doi.org/10.1016/j.ymthe.2023.04.007
    • Soragni, C., Vergroesen, T., Hettema, N., Rabussier, G., Lanz, H. L., Trietsch, S. J., de Windt, L. J., & Ng, C. P. (2023). Quantify permeability using on-a-chip models in high-throughput applications. STAR protocols, 4(1), Article 102051. https://doi.org/10.1016/j.xpro.2023.102051
    • de Boer, M., Hekkert, M. T., Chang, J., van Thiel, B. S., Martens, L., Bos, M. M., de Kleijnen, M. G. J., Ridwan, Y., Octavia, Y., van Deel, E. D., Blonden, L. A., Brandt, R. M. C., Barnhoorn, S., Bautista-Nino, P. K., Krabbendam-Peters, I., Wolswinkel, R., Arshi, B., Ghanbari, M., Kupatt, C., ... Duncker, D. J. (2023). DNA repair in cardiomyocytes is critical for maintaining cardiac function in mice. Aging Cell, 22(3), Article e13768. https://doi.org/10.1111/acel.13768
    • Gyöngyösi, M., Alcaide, P., Asselbergs, F. W., Brundel, B. J. J. M., Camici, G. G., da Costa Martins, P., Ferdinandy, P., Fontana, M., Girao, H., Gnecchi, M., Gollmann-Tepeköylü, C., Kleinbongard, P., Krieg, T., Madonna, R., Paillard, M., Pantazis, A., Perrino, C., Pesce, M., Schiattarella, G. G., ... Davidson, S. M. (2023). Long COVID and the cardiovascular system - elucidating causes and cellular mechanisms in order to develop targeted diagnostic and therapeutic strategies: a joint Scientific Statement of the ESC Working Groups on Cellular Biology of the Heart and Myocardial and Pericardial Diseases. Cardiovascular Research, 119(2), 336-356. Article cvac115. https://doi.org/10.1093/cvr/cvac115
    • Vilaça, A., de Windt, L. J., Fernandes, H., & Ferreira, L. (2023). Strategies and challenges for non-viral delivery of non-coding RNAs to the heart. Trends in Molecular Medicine, 29(1), 70-91. https://doi.org/10.1016/j.molmed.2022.10.002
  • 2022
    • Hegenbarth, J. C., De Majo, F., Spano, G., Olieslagers, S., Esfandyari, D., Tiburcy, M., Zimmermann, W. H., Stoll, M., & de Windt, L. (2022). Machine learning-assisted integration of single cell transcriptomic data identifies potential cardiomyocyte maturation genes. Journal of Molecular and Cellular Cardiology, 173, S47-S47. https://doi.org/10.1016/j.yjmcc.2022.08.094
    • Spano, G., Hegenbarth, J. C., De Majo, F., Tiburcy, M., Zimmermann, W. H., & de Windt, L. (2022). RNA m6A modification governs early human cardiomyocyte commitment. Journal of Molecular and Cellular Cardiology, 173, S108-S109. https://doi.org/10.1016/j.yjmcc.2022.08.215
    • Soragni, C., Rabussier, G., Lanz, H. L., Bircsak, K. M., de Windt, L. J., Trietsch, S. J., Murdoch, C. E., & Ng, C. P. (2022). A versatile multiplexed assay to quantify intracellular ROS and cell viability in 3D on-a-chip models. Redox Biology, 57, Article 102488. https://doi.org/10.1016/j.redox.2022.102488
    • Videira, R. F., Koop, A. M. C., Ottaviani, L., Poels, E. M., Kocken, J. M. M., Dos Remedios, C., Mendes-Ferreira, P., Van De Kolk, K. W., Du Marchie Sarvaas, G. J., Lourenço, A., Llucià-Valldeperas, A., Nascimento, D. S., de Windt, L. J., De Man, F. S., Falcão-Pires, I., Berger, R. M. F., & da Costa Martins, P. (2022). The adult heart requires baseline expression of the transcription factor Hand2 to withstand right ventricular pressure overload. Cardiovascular Research, 118(12), 2688-2702. https://doi.org/10.1093/cvr/cvab299
    • Raso, A., Dirkx, E., Sampaio-Pinto, V., El Azzouzi, H., Cubero, R. J., Sorensen, D. W., Ottaviani, L., Olieslagers, S., Huibers, M. M., de Weger, R., Siddiqi, S., Moimas, S., Torrini, C., Zentillin, L., Braga, L., Nascimento, D. S., da Costa Martins, P. A., van Berlo, J. H., Zacchigna, S., ... De Windt, L. J. (2022). Author Correction: A microRNA program regulates the balance between cardiomyocyte hyperplasia and hypertrophy and stimulates cardiac regeneration. Nature Communications, 13(1), Article 4977. https://doi.org/10.1038/s41467-022-32785-0
    • Sansonetti, M., & De Windt, L. J. (2022). Non-coding RNAs in cardiac inflammation: key drivers in the pathophysiology of heart failure. Cardiovascular Research, 118(9), 2058-2073. https://doi.org/10.1093/cvr/cvab192
    • Fernandes, H., Zonnari, A., Abreu, R., Aday, S., Barão, M., Albino, I., Lino, M., Branco, A., Seabra, C., Barata, T., Leal, E. C., Tralhão, J. G., Gonçalves, L., de Jong, A., Peters, H. A. B., de Vries, M. R., da Costa Martins, P., Quax, P. H. A., & Ferreira, L. (2022). Extracellular vesicles enriched with an endothelial cell pro-survival microRNA affects skin tissue regeneration. Molecular Therapy - Nucleic Acids, 28, 307-327. https://doi.org/10.1016/j.omtn.2022.03.018
    • Spano, G., De Majo, F., Hegenbarth, J. C., Tiburcy, M., Zimmermann, W. H., & De Windt, L. J. (2022). m6A modification regulates early human cardiomyocyte lineage specification. Cardiovascular Research, 118(SUPPL 1). https://doi.org/10.1093/cvr/cvac066.004
    • Ottaviani, L., Juni, R. P., de Abreu, R. C., Sansonetti, M., Sampaio-Pinto, V., Halkein, J., Hegenbarth, J. C., Ring, N., Knoops, K., Kocken, J. M. M., Jesus, C. D., Ernault, A. C., El Azzouzi, H., Rühle, F., Olieslagers, S., Fernandes, H., Ferreira, L., Braga, L., Stoll, M., ... da Costa Martins, P. A. (2022). Intercellular transfer of miR-200c-3p impairs the angiogenic capacity of cardiac endothelial cells. Molecular Therapy, 30(6), 2257-2273. https://doi.org/10.1016/j.ymthe.2022.03.002
    • Silva, J., & da Costa Martins, P. A. (2022). Non-Coding RNAs in the Therapeutic Landscape of Pathological Cardiac Hypertrophy. Cells, 11(11), Article 1805. https://doi.org/10.3390/cells11111805
    • Vilaca, A., Fernandes, H., de Windt, L., & Ferreira, L. (2022). H19-Enriched Extracellular Vesicles Promote Angiogenesis In Vitro. Tissue Engineering, 28, S354-S354.
    • Abreu, R., Albino, I., Barao, M., Branco, A., Fernades, H., Martins, P. D., & Ferreira, L. (2022). Microrna Enrichment Of Extracellular Vesicle Content For Diabetic Wound Treatment Potentiation. Tissue Engineering, 28, S363-S364.
    • de Windt, L. (2022). Small Tricks To Mend A Broken Heart. Tissue Engineering, 28, S643-S643.
  • 2021
    • Gandhi, S., Witten, A., De Majo, F., Gilbers, M., Maessen, J., Schotten, U., de Windt, L. J., & Stoll, M. (2021). Evolutionarily conserved transcriptional landscape of the heart defining the chamber specific physiology. Genomics, 113(6), 3782-3792. https://doi.org/10.1016/j.ygeno.2021.09.002
    • Sacchetto, C., Mohseni, Z., Colpaert, R. M. W., Vitiello, L., De Bortoli, M., Vonhogen, I. G. C., Xiao, K., Poloni, G., Lorenzon, A., Romualdi, C., Bariani, R., Mazzotti, E., Daliento, L., Bauce, B., Corrado, D., Thum, T., Rampazzo, A., de Windt, L. J., & Calore, M. (2021). Circulating miR-185-5p as a Potential Biomarker for Arrhythmogenic Right Ventricular Cardiomyopathy. Cells, 10(10), Article 2578. https://doi.org/10.3390/cells10102578
    • Schreurs, J., Sacchetto, C., Colpaert, R. M. W., Vitiello, L., Rampazzo, A., & Calore, M. (2021). Recent Advances in CRISPR/Cas9-Based Genome Editing Tools for Cardiac Diseases. International Journal of Molecular Sciences, 22(20), Article 10985. https://doi.org/10.3390/ijms222010985
    • De Majo, F., Martens, L., Hegenbarth, J. C., Ruhle, F., Hamczyk, M. R., Nevado, R. M., Andres, V., Hilbold, E., Bar, C., Thum, T., de Boer, M., Duncker, D. J., Schroen, B., Armand, A. S., Stoll, M., & De Windt, L. J. (2021). Genomic instability in the naturally and prematurely aged myocardium. Proceedings of the National Academy of Sciences of the United States of America, 118(36), Article e2022974118. https://doi.org/10.1073/pnas.2022974118
    • Raso, A., Dirkx, E., Sampaio-Pinto, V., el Azzouzi, H., Cubero, R. J., Sorensen, D. W., Ottaviani, L., Olieslagers, S., Huibers, M. M., de Weger, R., Siddiqi, S., Moimas, S., Torrini, C., Zentillin, L., Braga, L., Nascimento, D. S., da Costa Martins, P. A., van Berlo, J. H., Zacchigna, S., ... De Windt, L. J. (2021). A microRNA program regulates the balance between cardiomyocyte hyperplasia and hypertrophy and stimulates cardiac regeneration. Nature Communications, 12(1), Article 4808. https://doi.org/10.1038/s41467-021-25211-4
    • Abreu, R. C., Ramos, C., Becher, C., Lino, M., Jesus, C., da Costa Martins, P. A., Martins, P. A. T., Moreno, M. J., Fernandes, H., & Ferreira, L. (2021). Exogenous loading of miRNAs into small extracellular vesicles. Journal of Extracellular Vesicles, 10(10), Article 12111. https://doi.org/10.1002/jev2.12111
    • Badimon, L., Robinson, E. L., Jusic, A., Carpusca, I., DeWindt, L. J., Emanueli, C., Ferdinandy, P., Gu, W., Gyongyosi, M., Hackl, M., Karaduzovic-Hadziabdic, K., Lustrek, M., Martelli, F., Nham, E., Potocnjak, I., Satagopam, V., Schneider, R., Thum, T., & Devaux, Y. (2021). Cardiovascular RNA markers and artificial intelligence may improve COVID-19 outcome: a position paper from the EU-CardioRNA COST Action CA17129. Cardiovascular Research, 117(8), 1823-1840. https://doi.org/10.1093/cvr/cvab094
    • Vilaca, A., Sansonetti, M., Fernandes, H., de Windt, L., & Ferreira, L. (2021). Extracellular vesicles as lncRNA-H19 carriers to the cardiovascular system. European Journal of Clinical Investigation, 51, 108-109.
    • Sampaio-Pinto, V., Silva, E. D., Laundos, T. L., Martins, P. D. C., Pinto-do-O, P., & Nascimento, D. S. (2021). Stereological estimation of cardiomyocyte number and proliferation. Methods, 190, 55-62. https://doi.org/10.1016/j.ymeth.2020.06.002
    • D'Souza, A., Wang, Y. W., Anderson, C., Bucchi, A., Baruscotti, M., Olieslagers, S., Mesirca, P., Johnsen, A. B., Mastitskaya, S., Ni, H. B., Zhang, Y., Black, N., Cox, C., Wegner, S., Bano-Otalora, B., Petit, C., Gill, E., Logantha, S. J. R. J., Dobrzynski, H., ... Boyett, M. R. (2021). A circadian clock in the sinus node mediates day-night rhythms in Hcn4 and heart rate. Heart Rhythm, 18(5), 801-810. https://doi.org/10.1016/j.hrthm.2020.11.026
    • Colpaert, R. M. W., & Calore, M. (2021). Epigenetics and microRNAs in cardiovascular diseases. Genomics, 113(2), 540-551. https://doi.org/10.1016/j.ygeno.2020.12.042
  • 2020
    • Kocken, J. M. M., & da Costa Martins, P. A. (2020). Epigenetic Regulation of Pulmonary Arterial Hypertension-Induced Vascular and Right Ventricular Remodeling: New Opportunities?International journal of molecular sciences, 21(23), Article 8901. https://doi.org/10.3390/ijms21238901
    • Videira, R. F., Martins, P. A. D. C., & Falcao-Pires, I. (2020). Non-Coding RNAs as Blood-Based Biomarkers in Cardiovascular Disease. International journal of molecular sciences, 21(23), Article 9285. https://doi.org/10.3390/ijms21239285
    • de Abreu, R. C., Fernandes, H., Martins, P. A. D. C., Sahoo, S., Emanueli, C., & Ferreira, L. (2020). Native and bioengineered extracellular vesicles for cardiovascular therapeutics. Nature Reviews Cardiology, 17(11), 685-697. https://doi.org/10.1038/s41569-020-0389-5
    • Kesidou, D., Martins, P. A. D. C., de Windt, L. J., Brittan, M., Beqqali, A., & Baker, A. H. (2020). Extracellular Vesicle miRNAs in the Promotion of Cardiac Neovascularisation. Frontiers in physiology, 11, Article 579892. https://doi.org/10.3389/fphys.2020.579892
    • Videira, R. F., & da Costa Martins, P. A. (2020). Non-coding RNAs in Cardiac Intercellular Communication. Frontiers in physiology, 11, Article 738. https://doi.org/10.3389/fphys.2020.00738
    • Bar, C., Chatterjee, S., Pires, I. F., Rodrigues, P., Sluijter, J. P. G., Boon, R. A., Nevado, R. M., Andres, V., Sansonetti, M., de Windt, L., Ciccarelli, M., Hamdani, N., Heymans, S., Videira, R. F., Tocchetti, C. G., Giacca, M., Zacchigna, S., Engelhardt, S., Dimmeler, S., ... Thum, T. (2020). Non-coding RNAs: update on mechanisms and therapeutic targets from the ESC Working Groups of Myocardial Function and Cellular Biology of the Heart. Cardiovascular Research, 116(11), 1805-1819. https://doi.org/10.1093/cvr/cvaa195
    • Vonhogen, I. G. C., Mohseni, Z., Winkens, B., Xiao, K., Thum, T., Calore, M., Martins, P. A. D. C., de Windt, L. J., Spaanderman, M. E. A., & Ghossein-Doha, C. (2020). Circulating miR-216a as a biomarker of metabolic alterations and obesity in women. Non-Coding rna research, 5(3), 144-152. https://doi.org/10.1016/j.ncrna.2020.08.001
    • Prando, V., Bertoli, S., Favaro, G., Guescini, M., Di Mauro, V., Di Bona, A., Lo Verso, F., Soares, R., Dokshokova, L., Martins, P. D. C., Capri, M., Salvioli, S., Franceschi, C., Catalucci, D., Mongillo, M., Sandri, M., & Zaglia, T. (2020). Circulating muscle-derived MIR-206 links skeletal muscle dysfunction to cardiac autonomic denervation. Vascular Pharmacology, 132, Article 106742. https://doi.org/10.1016/j.vph.2020.106742
    • Santos-Faria, J., Gavina, C., Rodrigues, P., Coelho, J., Martins, P. D. C., Leite-Moreira, A., & Falcao-Pires, I. (2020). MicroRNAs and ventricular remodeling in aortic stenosis. Revista portuguesa de cardiologia, 39(7), 377-387. https://doi.org/10.1016/j.repc.2019.09.014
    • De Majo, F., & da Costa Martins, P. A. (2020). CircRNAs in the heart: bricks in Brunelleschi's Dome. Cardiovascular Research, 116(7), 1240-1241. https://doi.org/10.1093/cvr/cvaa020
    • De Majo, F., Hegenbarth, J.-C., Ruehle, F., Baer, C., Thum, T., de Boer, M., Duncker, D. J., Schroen, B., Armand, A.-S., Stoll, M., & De Windt, L. J. (2020). Dichotomy between the transcriptomic landscape of naturally versus accelerated aged murine hearts. Scientific Reports, 10(1), Article 8136. https://doi.org/10.1038/s41598-020-65115-9
    • Sacchetto, C., Vitiello, L., de Windt, L. J., Rampazzo, A., & Calore, M. (2020). Modeling Cardiovascular Diseases with hiPSC-Derived Cardiomyocytes in 2D and 3D Cultures. International Journal of Molecular Sciences, 21(9), Article 3404. https://doi.org/10.3390/ijms21093404
    • Vonhoegen, I. G. C., el Azzouzi, H., Olieslagers, S., Vasilevich, A., de Boer, J., Tinahones, F. J., Martins, P. A. D. C., de Windt, L. J., & Murri, M. (2020). MiR-337-3p Promotes Adipocyte Browning by Inhibiting TWIST1. Cells, 9(4), Article 1056. https://doi.org/10.3390/cells9041056
    • De Bortoli, M., Vio, R., Basso, C., Calore, M., Minervini, G., Angelini, A., Melacini, P., Vitiello, L., Vazza, G., Thiene, G., Tosatto, S., Corrado, D., Iliceto, S., Rampazzo, A., & Calore, C. (2020). Novel Missense Variant in MYL2 Gene Associated With Hypertrophic Cardiomyopathy Showing High Incidence of Restrictive Physiology. Circulation: Genomic and Precision Medicine, 13(2), Article 002824. https://doi.org/10.1161/circgen.119.002824
    • Peters, M. M. C., Sampaio-Pinto, V., & da Costa Martins, P. A. (2020). Non-coding RNAs in endothelial cell signalling and hypoxia during cardiac regeneration. Biochimica et Biophysica Acta-Molecular Cell Research, 1867(3), Article 118515. https://doi.org/10.1016/j.bbamcr.2019.07.010
  • 2019
    • Sacchetto, C., Sequeira, V., Bertero, E., Dudek, J., Maack, C., & Calore, M. (2019). Metabolic Alterations in Inherited Cardiomyopathies. Journal of Clinical Medicine, 8(12), Article 2195. https://doi.org/10.3390/jcm8122195
    • Zaglia, T., Prando, V., Bertoli, S., Favaro, G., Di Mauro, V., Guescini, M., Di Bona, A., Lo Verso, F., Soares, R., Martins, P. D. C., Catalucci, D., Mongillo, M., & Sandri, M. (2019). Circulating muscle-derived mir-206 links skeletal muscle dysfunction to cardiac autonomic denervation. European Heart Journal, 40, 80-80. https://doi.org/10.1093/eurheartj/ehz747.0078