Matthijs Cluitmans

Assistant Professor

Dr Matthijs Cluitmans obtained a broad training at Maastricht University by studying Knowledge Engineering (Department of Data Science and Knowledge Engineering) and Medicine (Faculty of Health, Medicine and Life Sciences). He combined this dual background in a PhD thesis studying how advanced novel imaging techniques such as electrocardiographic imaging may help to better characterise the substrate for cardiac arrhythmias. This clinical-experimental-mathematical endeavor was supervised by Prof. Paul Volders (cardiology), Prof. Ralf Peeters (mathematics) and Prof. Ronald Westra (mathematics). After his PhD, Matthijs shifted his focus from the technical aspects of electrocardiographic imaging to applying such techniques to understand the development of life-threatening ventricular arrhythmias. Following a post-doc in Maastricht (2016-2018), he visited the team of Dr Rémi Dubois at the Liryc institute in Bordeaux to perform experiments on the arrhythmogenic characteristics of repolarisation abnormalities (Feb-Nov 2018). He then worked in the lab of Dr Ruben Coronel to obtain more expertise in the field of macroscopic repolarisation abnormalities. Since May 2019, Matthijs is back in Maastricht and working in the PI team of Prof. Paul Volders. Since 2016, Matthijs also works part time at Philips Research. Matthijs obtained multiple awards (amongst which Young Investigator Awards) and grants (most notably the Dutch NWO Veni personal research grant).

As a biomedical engineer and medical doctor, Matthijs hopes to bring more insight in the mechanisms of unexplained ventricular arrhythmias which can lead to sudden cardiac death. He currently is executing an NWO Veni grant to clinically characterise, experimentally study and computationally model the mechanisms of trigger-substrate interaction leading to arrhythmias in the ventricles. He is focusing on the role of repolarisation abnormalities in that setting and also works for the clinical Vigilance study headed by Prof. Paul Volders.

Matthijs is especially interested in contributing to the personalisation of medicine, using computational models to provide insights in arrhythmia mechanisms at the level of an individual rather than at the level of a population of patients. At Maastricht University, his research focusses on the (individual) mechanistic understanding of ventricular arrhythmias. In his part time position at Philips Research, Matthijs is exploring the use of computational electrophysiology models to personalise diagnosis and therapy. The overlap between these positions promotes the transition from scientific findings to clinical application.

Department of Cardiology
Universiteitssingel 50, 6229 ER Maastricht
PO Box 616, 6200 MD Maastricht
Room number: 3.222

  • 2024
    • Cluitmans, M. J. M., Plank, G., & Heijman, J. (2024). Digital twins for cardiac electrophysiology: state of the art and future challenges. Herzschrittmachertherapie und Elektrophysiologie. Advance online publication.
    • Willems, E., Janssens, K. L. P. M., Dekker, L. R. C., van de Vosse, F. N., Cluitmans, M. J. M., & Bovendeerd, P. H. M. (2024). Strain-controlled electrophysiological wave propagation alters in silico scar-based substrate for ventricular tachycardia. Frontiers in physiology, 15, Article 1330157.
    • Stoks, J., Langfield, P., & Cluitmans, M. J. M. (2024). Methodological and Mechanistic Considerations in Local Repolarization Mapping. JACC: Clinical Electrophysiology, 10(2), 376-377.
  • 2023
    • Filgueiras-Rama, D., Ramos-Prada, A., & Cluitmans, M. J. M. (2023). Arrhythmogenic vulnerability of reentrant pathways in post-infarct ventricular tachycardia assessed by advanced computational modelling. EP Europace, 25(9), Article euad258.
    • Cluitmans, M., Walton, R., & Plank, G. (2023). Editorial: Computational methods in cardiac electrophysiology. Frontiers in physiology, 14(1), Article 1231342.
    • Cluitmans, M. J. M., Bayer, J., Bear, L. R., Ter Bekke, R. M. A., Heijman, J., Coronel, R., & Volders, P. G. A. (2023). The circle of reentry: Characteristics of trigger-substrate interaction leading to sudden cardiac arrest. Frontiers in Cardiovascular Medicine, 10, Article 1121517.
    • Stoks, J., Bear, L. R., Vijgen, J., Dendale, P., Peeters, R., Volders, P. G. A., & Cluitmans, M. J. M. (2023). Understanding repolarization in the intracardiac unipolar electrogram: A long-lasting controversy revisited. Frontiers in physiology, 14, Article 1158003.
    • Stoks, J., Hermans, B. M., Boukens, B. J. D., Holtackers, R. J., Gommers, S., Kaya, Y. S., Vernooy, K., Cluitmans, M. J. M., Volders, P. G. A., & ter Bekke, R. M. A. (2023). High-resolution structural-functional substrate-trigger characterization: Future roadmap for catheter ablation of ventricular tachycardia. Frontiers in Cardiovascular Medicine, 10(1), Article 1112980.
  • 2022
    • van der Waal, J., Bear, L., Meijborg, V., Dubois, R., Cluitmans, M., & Coronel, R. (2022). Steep repolarization time gradients in pig hearts cause distinct changes in composite electrocardiographic T-wave parameters. Annals of Noninvasive Electrocardiology, 27(6), Article 12994.
    • Evans, P. C., Davidson, S. M., Wojta, J., Bäck, M., Bollini, S., Brittan, M., Catapano, A. L., Chaudhry, B., Cluitmans, M., Gnecchi, M., Guzik, T. J., Hoefer, I., Madonna, R., Monteiro, J. P., Morawietz, H., Osto, E., Padró, T., Sluimer, J. C., Tocchetti, C. G., ... Weber, C. (2022). From novel discovery tools and biomarkers to precision medicine-basic cardiovascular science highlights of 2021/22. Cardiovascular Research, 118(13), 2754-2767.
    • Dilaveris, P. E., Antoniou, C. K., Caiani, E. G., Casado-Arroyo, R., Climent, A. Μ., Cluitmans, M., Cowie, M. R., Doehner, W., Guerra, F., Jensen, M. T., Kalarus, Z., Locati, E. T., Platonov, P., Simova, I., Schnabel, R. B., Schuuring, M., Tsivgoulis, G., & Lumens, J. (2022). ESC Working Group on e-Cardiology Position Paper: accuracy and reliability of electrocardiogram monitoring in the detection of atrial fibrillation in cryptogenic stroke patients : In collaboration with the Council on Stroke, the European Heart Rhythm Association, and the Digital Health Committee. European Heart Journal - Digital Health, 3(3), 341-358.
    • Schuler, S., Schaufelberger, M., Bear, L. R., Bergquist, J., Cluitmans, M., Coll-Font, J., Onak, O. N., Zenger, B., Loewe, A., Macleod, R., Brooks, D. H., & Doessel, O. (2022). Reducing Line-of-block Artifacts in Cardiac Activation Maps Estimated Using ECG Imaging: A Comparison of Source Models and Estimation Methods. Ieee Transactions on Biomedical Engineering, 69(6), 2041-2052.
    • Cluitmans, M., Coll-Font, J., Erem, B., Bear, L., Nguyên, U. C., Ter Bekke, R., Volders, P. G. A., & Brooks, D. (2022). Spatiotemporal approximation of cardiac activation and recovery isochrones. Journal of Electrocardiology, 71, 1-9.
  • 2021
    • Cluitmans, M. J. M., Bear, L. R., Nguyên, U. C., van Rees, B., Stoks, J., Ter Bekke, R. M. A., Mihl, C., Heijman, J., Lau, K. D., Vigmond, E., Bayer, J., Belterman, C. N. W., Abell, E., Labrousse, L., Rogier, J., Bernus, O., Haïssaguerre, M., Hassink, R. J., Dubois, R., ... Volders, P. G. A. (2021). Noninvasive detection of spatiotemporal activation-repolarization interactions that prime idiopathic ventricular fibrillation. Science Translational Medicine, 13(620), Article eabi9317.
    • Van Rees, B., Stoks, J., Nguyen, Y. C., Ter Bekke, R. M. A., Mihl, C., Cluitmans, M., & Volders, P. G. A. (2021). Local areas of earlier repolarization cause epicardial repolarization heterogeneity in patients with apparently idiopathic ventricular fibrillation. European Heart Journal, 42, 326-326.
    • Kruithof, E., Amirrajab, S., Cluitmans, M. J. M., Lau, K. D., & Breeuwer, M. (2021). Influence of image artifacts on image-based computer simulations of the cardiac electrophysiology. Computers in Biology and Medicine, 137, Article 104773.
    • Jurak, P., Bear, L. R., Nguyên, U. C., Viscor, I., Andrla, P., Plesinger, F., Halamek, J., Vondra, V., Abell, E., Cluitmans, M. J. M., Dubois, R., Curila, K., Leinveber, P., & Prinzen, F. W. (2021). 3-Dimensional ventricular electrical activation pattern assessed from a novel high-frequency electrocardiographic imaging technique: principles and clinical importance. Scientific Reports, 11(1), Article 11469.
    • Bear, L. R., Cluitmans, M., Abell, E., Rogier, J., Labrousse, L., Cheng, L. K., LeGrice, I., Lever, N., Sands, G. B., Smaill, B., Haïssaguerre, M., Bernus, O., Coronel, R., & Dubois, R. (2021). Electrocardiographic Imaging of Repolarization Abnormalities. Journal of the American Heart Association, 10(9), Article e020153.
    • Salinet, J., Molero, R., Schlindwein , F., Karel, J., Rodrigo, M., Rojo-Álvarez, J. L., Berenfeld, O., Climent, A., Zenger, B., Vanheusden, F., Paredes Jimena, G. S., MacLeod, R., Atienza, F., Guillem, M., Cluitmans, M., & Bonizzi, P. (2021). Electrocardiographic imaging for atrial fibrillation: a perspective from computer models and animal experiments to clinical value. Frontiers in physiology, 12, Article 653013.
    • Coronel, R., Potse, M., Haïssaguerre, M., Derval, N., Rivaud, M. R., Meijborg, V. M. F., Cluitmans, M., Hocini, M., & Boukens, B. J. (2021). Why Ablation of Sites With Purkinje Activation Is Antiarrhythmic: The Interplay Between Fast Activation and Arrhythmogenesis. Frontiers in physiology, 12, Article 648396.
    • Rivaud, M. R., Bayer, J. D., Cluitmans, M., van der Waal, J., Bear, L. R., Boukens, B. J., Belterman, C., Gottlieb, L., Vaillant, F., Abell, E., Dubois, R., Meijborg, V. M. F., & Coronel, R. (2021). Critical repolarization gradients determine the induction of reentry-based torsades de pointes arrhythmia in models of long QT syndrome. Heart Rhythm, 18(2), 278-287.
  • 2020
    • Stoks, J., Chau Nguyen, U., Peeters, R., Volders, P., & Cluitmans, M. (2020). An Open-Source Algorithm for Standardized Bullseye Visualization of High-Resolution Cardiac Ventricular Data: UNISYS. Computing in Cardiology, 47, 1-4. Article 160.
    • Stoks, J., Van Rees, B., Groeneveld, S., Schipaanboord, D., Blom, L., Hassink, R., Cluitmans, M., Peeters, R., & Volders, P. (2020). Variability of Electrocardiographic Imaging Within and Between Leadsets. Computing in Cardiology, 47, 1-4. Article 097.
    • Stoks, J., Van Rees, B. D., Nguyen, U. C., Peeters, R. L. M., Dendale, P., Cluitmans, M. J. M., & Volders, P. G. A. (2020). Noninvasive assessment of dynamic cardiac electrophysiology in normal human subjects. European Heart Journal, 41(S2), 3596-3596.
    • Sutanto, H., Cluitmans, M. J. M., Dobrev, D., Volders, P. G. A., Bébarová, M., & Heijman, J. (2020). Acute effects of alcohol on cardiac electrophysiology and arrhythmogenesis: Insights from multiscale in silico analyses. Journal of Molecular and Cellular Cardiology, 146, 69-83.
    • Meo, M., Bonizzi, P., Bear, L., Cluitmans, M., Abell, E., Haïssaguerre, M., Bernus, O., & Dubois, R. (2020). Body Surface Mapping of Ventricular Repolarization Heterogeneity: An Ex-vivo Multiparameter Study. Frontiers in physiology, 11, Article 933.
    • Blom, L. J., Groeneveld, S. A., Wulterkens, B. M., van Rees, B., Nguyen, U. C., Roudijk, R. W., Cluitmans, M., Volders, P. G. A., & Hassink, R. J. (2020). Novel use of repolarization parameters in electrocardiographic imaging to uncover arrhythmogenic substrate. Journal of Electrocardiology, 59, 116-121.
  • 2019
    • Cluitmans, M. J. M., Stoks, J., & Volders, P. G. A. (2019). To the Editor-Interpretation of electrograms is key to understand the clinical potential of ECGI. Heart Rhythm, 16(6), E51-E52.
    • Nguyen, U. C., Cluitmans, M. J. M., Strik, M., Luermans, J. G., Gommers, S., Wildberger, J. E., Bekkers, S. C. A. M., Volders, P. G. A., Mihl, C., Prinzen, F. W., & Vernooy, K. (2019). Integration of cardiac magnetic resonance imaging, electrocardiographic imaging, and coronary venous computed tomography angiography for guidance of left ventricular lead positioning. EP Europace, 21(4), 626-635.
    • Bear, L. R., Bouhamama, O., Cluitmans, M., Duchateau, J., Walton, R. D., Abell, E., Belterman, C., Haissaguerre, M., Bernus, O., Coronel, R., & Dubois, R. (2019). Advantages and pitfalls of noninvasive electrocardiographic imaging. Journal of Electrocardiology, 57, S15-S20.
  • 2018
    • Nguyen, U. C., Cluitmans, M. J. M., Prinzen, F. W., Mihl, C., & Vernooy, K. (2018). Reply to the letter from Bhagirath etal. Imaging for cardiac resynchronisation therapy requires cardiac magnetic resonance. Netherlands Heart Journal, 26(12), 641-642.
    • Cluitmans, M., Karel, J., Bonizzi, P., Volders, P., Westra, R., & Peeters, R. (2018). Wavelet-promoted sparsity for non-invasive reconstruction of electrical activity of the heart. Medical & Biological Engineering & Computing, 56(11), 2039-2050.
    • Cluitmans, M., Brooks, D. H., MacLeod, R., Dossel, O., Guillem, M. S., van Dam, P. M., Svehlikova, J., He, B., Sapp, J., Wang, L., & Bear, L. (2018). Validation and Opportunities of Electrocardiographic Imaging: From Technical Achievements to Clinical Applications. Frontiers in physiology, 9, Article 1305.
    • Nguyen, U. C., Cluitmans, M. J. M., Luermans, J. G. L. M., Strik, M., de Vos, C. B., Kietselaer, B. L. J. H., Wildberger, J. E., Prinzen, F. W., Mihl, C., & Vernooy, K. (2018). Visualisation of coronary venous anatomy by computed tomography angiography prior to cardiac resynchronisation therapy implantation. Netherlands Heart Journal, 26(9), 433-440.
  • 2017
    • Cluitmans, M. J. M., Clerx, M., Vandersickel, N., Peeters, R. L. M., Volders, P. G. A., & Westra, R. L. (2017). Physiology-based regularization of the electrocardiographic inverse problem. Medical & Biological Engineering & Computing, 55(8), 1353-1365.
    • Cluitmans, M. J. M., Bonizzi, P., Karel, J. M. H., Das, M., Kietselaer, B. L. J. H., Jong, M. M. J. D., Prinzen, F. W., Peeters, R. L. M., Westra, R. L., & Volders, P. G. A. (2017). In Vivo Validation of Electrocardiographic Imaging. JACC: Clinical Electrophysiology, 3(3), 232 - 242.
  • 2015
    • Cluitmans, M. J. M., Peeters, R. L. M., Westra, R. L., & Volders, P. G. A. (2015). Noninvasive reconstruction of cardiac electrical activity: update on current methods, applications and challenges. Netherlands Heart Journal, 23(6), 301-311.