Ingrid Dijkgraaf

Associate professor

Dr Ingrid Dijkgraaf has graduated with specialisation in Organic Chemistry at Wageningen University. Subsequently, she has worked on synthesis and biologic evaluation of alpha-v-beta-3-binding peptides and peptidomimetics at the Department of Medicinal Chemistry and Chemical Biology at Utrecht University, and at the Department of Nuclear Medicine at the Radboud University Nijmegen. After obtaining her PhD, she worked as post-doc at the Technical University of Munich, the Radboud University of Nijmegen and The Scripps Research Institute.

Since 2011, she has been working at Maastricht University. Focus of her research is design and synthesis of peptides and proteins using Solid-Phase Peptide Synthesis and Native Chemical Ligation. These compounds are conjugated with chelators, fluorescent labels, and multimodality tags allowing molecular imaging of cardiovascular diseases and cancer. Synthesised compounds are evaluated in in vitro and in vivo studies.

Department of Biochemistry
Universiteitssingel 50, 6229 ER Maastricht
PO Box 616, 6200 MD Maastricht
Room number: 4.350

  • 2023
    • Timmers, M., Peeters, W., Hauwert, N. J., Rijcken, C. J. F., Vermonden, T., Dijkgraaf, I., & Liskamp, R. M. J. (2023). Specific N-terminal attachment of TMTHSI linkers to native peptides and proteins for strain-promoted azide alkyne cycloaddition. Chemical Communications, 59(76), 11397-11400. Article 59. https://doi.org/10.1039/d3cc03397j
    • Chai, J., Wu, J., Li, J., Liao, H., Lu, W., Guo, R., Shao, Z., Jmel, M. A., Martins, L. A., Hackeng, T., Ippel, H., Dijkgraaf, I., Kotsyfakis, M., & Xu, X. (2023). Novel Amphibian Bowman-Birk-Like Inhibitor with Antioxidant and Anticoagulant Effects Ameliorates Pancreatitis Symptoms in Mice. Journal of Medicinal Chemistry, 66(17), 11869-11880. https://doi.org/10.1021/acs.jmedchem.3c00475
    • Timmers, M., Kipper, A., Frey, R., Notermans, S., Voievudskyi, M., Wilson, C., Hentzen, N., Ringle, M., Bovino, C., Stump, B., Rijcken, C. J. F., Vermonden, T., Dijkgraaf, I., & Liskamp, R. (2023). Exploring the Chemical Properties and Medicinal Applications of Tetramethylthiocycloheptyne Sulfoximine Used in Strain-Promoted Azide-Alkyne Cycloaddition Reactions. Pharmaceuticals, 16(8), Article 1155. https://doi.org/10.3390/ph16081155
    • Abbas, M. N., Jmel, M. A., Mekki, I., Dijkgraaf, I., & Kotsyfakis, M. (2023). Recent Advances in Tick Antigen Discovery and Anti-Tick Vaccine Development. International Journal of Molecular Sciences, 24(5), Article 4969. https://doi.org/10.3390/ijms24054969
  • 2022
    • van den Kerkhof, D. L., Nagy, M., Wichapong, K., Brouns, S. L. N., Suylen, D. P. L., Hackeng, T. M., & Dijkgraaf, I. (2022). Unraveling the role of the homoarginine residue in antiplatelet drug eptifibatide in binding to the αIIbβ3 integrin receptor. Thrombosis Research, 217, 96-103. https://doi.org/10.1016/j.thromres.2022.07.011
    • Huang, J., Jooss, N. J., Fernández, D. I., Sickmann, A., García, Á., Wichapong, K., Dijkgraaf, I., & Heemskerk, J. W. M. (2022). Roles of Focal Adhesion Kinase PTK2 and Integrin αIIbβ3 Signaling in Collagen- and GPVI-Dependent Thrombus Formation under Shear. International journal of molecular sciences, 23(15), Article 8688. https://doi.org/10.3390/ijms23158688
    • Dickhout, A., van de Vijver, P., Bitsch, N., van Hoof, S. J., Thomassen, S. L. G. D., Massberg, S., Timmerman, P., Verhaegen, F., Koenen, R. R., Dijkgraaf, I., & Hackeng, T. M. (2022). Molecular Detection of Venous Thrombosis in Mouse Models Using SPECT/CT. Biomolecules, 12(6), Article 829. https://doi.org/10.3390/biom12060829
  • 2021
    • Denisov, S. S., & Dijkgraaf, I. (2021). Immunomodulatory Proteins in Tick Saliva From a Structural Perspective. Frontiers in Cellular and Infection Microbiology, 11, Article 769574. https://doi.org/10.3389/fcimb.2021.769574
    • Camps, E. C., van Lith, S. A. M., Frielink, C., Lankhof, J., Dijkgraaf, I., Gotthardt, M., & Brock, R. (2021). CPPs to the Test: Effects on Binding, Uptake and Biodistribution of a Tumor Targeting Nanobody. Pharmaceuticals, 14(7), Article 602. https://doi.org/10.3390/ph14070602
    • Denisov, S. S., Ippel, J. H., Castoldi, E., Mans, B. J., Hackeng, T. M., & Dijkgraaf, I. (2021). Molecular basis of anticoagulant and anticomplement activity of the tick salivary protein Salp14 and its homologs. Journal of Biological Chemistry, 297(1), Article 100865. https://doi.org/10.1016/j.jbc.2021.100865
    • van Gorp, R. H., Dijkgraaf, I., Bröker, V., Bauwens, M., Leenders, P., Jennen, D., Dweck, M. R., Bucerius, J., Briedé, J. J., van Ryn, J., Brandenburg, V., Mottaghy, F., Spronk, H. M. H., Reutelingsperger, C. P., & Schurgers, L. J. (2021). Off-target effects of oral anticoagulants - vascular effects of vitamin K antagonist and non-vitamin K antagonist oral anticoagulant dabigatran etexilate. Journal of Thrombosis and Haemostasis, 19(5), 1348-1363. https://doi.org/10.1111/jth.15289
    • van den Kerkhof, D. L., van der Meijden, P. E. J., Hackeng, T. M., & Dijkgraaf, I. (2021). Exogenous Integrin αIIbβ3 Inhibitors Revisited: Past, Present and Future Applications. International journal of molecular sciences, 22(7), Article 3366. https://doi.org/10.3390/ijms22073366
    • van den Kerkhof, D. L., Nagy, M., Wichapong, K., Brouns, S. L. N., Heemskerk, J. W. M., Hackeng, T. M., & Dijkgraaf, I. (2021). Inhibition of platelet adhesion, thrombus formation, and fibrin formation by a potent αIIbβ3 integrin inhibitor from ticks. Research and practice in thrombosis and haemostasis, 5(1), 231-242. https://doi.org/10.1002/rth2.12466
  • 2020
    • Denisov, S. S., Ramirez-Escudero, M., Heinzmann, A. C. A., Ippel, J. H., Dawson, P. E., Koenen, R. R., Hackeng, T. M., Janssen, B. J. C., & Dijkgraaf, I. (2020). Structural characterization of anti-CCL5 activity of the tick salivary protein evasin-4. Journal of Biological Chemistry, 295(42), 14367-14378. https://doi.org/10.1074/jbc.RA120.013891
    • Eckardt, V., Miller, M. C., Blanchet, X., Duan, R., Leberzammer, J., Duchene, J., Soehnlein, O., Megens, R. T. A., Ludwig, A.-K., Dregni, A., Faussner, A., Wichapong, K., Ippel, H., Dijkgraaf, I., Kaltner, H., Doering, Y., Bidzhekov, K., Hackeng, T. M., Weber, C., ... Mayo, K. H. (2020). Chemokines and galectins form heterodimers to modulate inflammation. Embo Reports, 21(4), Article 47852. https://doi.org/10.15252/embr.201947852
    • Denisov, S. S., Heinzmann, A. C. A., Vajen, T., Vries, M. H. M., Megens, R. T. A., Suylen, D., Koenen, R. R., Post, M. J., Ippel, J. H., Hackeng, T. M., & Dijkgraaf, I. (2020). Tick Saliva Protein Evasin-3 Allows for Visualization of Inflammation in Arteries through Interactions with CXC-Type Chemokines Deposited on Activated Endothelium. Bioconjugate Chemistry, 31(3), 948-955. https://doi.org/10.1021/acs.bioconjchem.0c00095
  • 2019
    • Siitonen, R., Peuhu, E., Autio, A., Liljenback, H., Mattila, E., Metsala, O., Kakela, M., Saanijoki, T., Dijkgraaf, I., Jalkanen, S., Ivaska, J., & Roivainen, A. (2019). 68Ga-DOTA-E[c(RGDfK)]2 PET Imaging of SHARPIN-Regulated Integrin Activity in Mice. Journal of Nuclear Medicine, 60(10), 1380-1387. https://doi.org/10.2967/jnumed.118.222026
    • Denisov, S. S., Ippel, J. H., Heinzmann, A. C. A., Koenen, R. R., Ortega-Gomez, M., Soehnlein, O., Hackeng, T. M., & Dijkgraaf, I. (2019). Tick saliva protein Evasin-3 modulates chemotaxis by disrupting CXCL8 interactions with glycosaminoglycans and CXCR2. Journal of Biological Chemistry, 294(33), 12370-12379. https://doi.org/10.1074/jbc.RA119.008902
    • Denisov, S. S., Ippel, J. H., Mans, B. J., Dijkgraaf, I., & Hackeng, T. M. (2019). SecScan: a general approach for mapping disulfide bonds in synthetic and recombinant peptides and proteins. Chemical Communications, 55(10), 1374-1377. https://doi.org/10.1039/c8cc08777f
    • Bucerius, J., Dijkgraaf, I., Mottaghy, F. M., & Schurgers, L. J. (2019). Target identification for the diagnosis and intervention of vulnerable atherosclerotic plaques beyond 18F-fluorodeoxyglucose positron emission tomography imaging: promising tracers on the horizon. European Journal of Nuclear Medicine and Molecular Imaging, 46(1), 251-265. https://doi.org/10.1007/s00259-018-4176-z
  • 2017
    • von Hundelshausen, P., Agten, S. M., Eckardt, V., Blanchet, X., Schmitt, M. M., Ippel, H., Neideck, C., Bidzhekov, K., Leberzammer, J., Wichapong, K., Faussner, A., Drechsler, M., Grommes, J., van Geffen, J. P., Li, H., Ortega-Gomez, A., Megens, R. T. A., Naumann, R., Dijkgraaf, I., ... Weber, C. (2017). Chemokine interactome mapping enables tailored intervention in acute and chronic inflammation. Science Translational Medicine, 9(384), Article eaah6650. https://doi.org/10.1126/scitranslmed.aah6650
    • Beer, A. J., & Dijkgraaf, I. (2017). Editorial European Journal of Nuclear Medicine and Molecular Imaging. European Journal of Nuclear Medicine and Molecular Imaging, 44(2), 284-285. https://doi.org/10.1007/s00259-016-3559-2
    • Hendrikx, G., Hackeng, T. M., van Gorp, R., Bauwens, M., Schurgers, L. J., Mottaghy, F. M., Post, M. J., & Dijkgraaf, I. (2017). Use of Cyclic Backbone NGR-Based SPECT to Increase Efficacy of Postmyocardial Infarction Angiogenesis Imaging. Contrast Media & Molecular Imaging, 2017, Article 8638549. https://doi.org/10.1155/2017/8638549
  • 2016
    • Caolo, V., Vries, M., Zupancich, J., Houben, M., Mihov, G., Wagenaar, A., Swennen, G., Nossent, Y., Quax, P., Suylen, D., Dijkgraaf, I., Molin, D., Hackeng, T., & Post, M. (2016). CXCL1 microspheres: a novel tool to stimulate arteriogenesis. Drug Delivery, 23(8), 2919-2926. https://doi.org/10.3109/10717544.2015.1120366
  • 2015
    • Vries, M. H. M., Wagenaar, A., Verbruggen, S. E. L., Molin, D. G. M., Dijkgraaf, I., Hackeng, T., & Post, M. J. (2015). CXCL1 promotes arteriogenesis through enhanced monocyte recruitment into the peri-collateral space. Angiogenesis, 18(2), 163-171. https://doi.org/10.1007/s10456-014-9454-1
  • 2014
    • Kiugel, M., Dijkgraaf, I., Kyto, V., Helin, S., Liljenback, H., Saanijoki, T., Yim, C.-B., Oikonen, V., Saukko, P., Knuuti, J., Roivainen, A., & Saraste, A. (2014). Dimeric [Ga-68]DOTA-RGD Peptide Targeting alpha(v)beta(3) Integrin Reveals Extracellular Matrix Alterations after Myocardial Infarction. Molecular Imaging and Biology, 16(6), 793-801. https://doi.org/10.1007/s11307-014-0752-1
  • 2013
    • Dijkgraaf, I., Van de Vijver, P., Dirksen, A., & Hackeng, T. M. (2013). Synthesis and application of cNGR-containing imaging agents for detection of angiogenesis. Bioorganic & Medicinal Chemistry, 21(12), 3555-3564. https://doi.org/10.1016/j.bmc.2013.04.002