Tammo Delhaas


Tammo Delhaas is Pediatric Cardiologist and Professor of Biomedical Engineering. He obtained his MD at the University of Groningen and received his PhD degree from Maastricht University in 1993 for a thesis on cardiac mechanics. After his training in Pediatrics in Maastricht and Utrecht, he received a Fulbright grant/ICIN-Fellowship and spent one year at the Departments of Bioengineering and Medicine from the UCSD. Thereafter, he trained in Pediatric Cardiology in Aachen and Melbourne. In 2000, he returned to Maastricht as Pediatric Cardiologist and continued his research on the crossroads of (Pediatric) Cardiology, Physiology and Biomedical Engineering. In 2009, he was appointed Professor and Chair of Biomedical Engineering at Maastricht University, where he is involved in projects related to cellular and cardiac mechanics, cardiac pacing, and mathematical modeling of the heart and circulation.

Prof. Tammo Delhaas is heading the CardioVascular System Dynamics Research Group (CVSDRG). With clinical questions regarding (congenital) heart diseases in mind, his research focusses on asynchronous electrical activation, vascular and myocardial structure-function relation, and computer model-assisted diagnosis and treatment of cardiac failure, pulmonary hypertension and congenital heart diseases. Besides standard expertise, CVSDRG uses following techniques/models in which it has expertise of extraordinary quality according to international standards: 1) CircAdapt, a lumped parameter mathematical model of the human heart and circulation that enables real-time simulation of cardiovascular system dynamics in a wide variety of physiological and pathophysiological situations (www.circadapt.org); 2) Finite Element Model of the heart with left and right ventricle, simulating local stress and strain as a function of time with emphasis on adaptation of wall anatomy to local mechanical load; 3) Pulse Wave Propagation and Computational Fluid Dynamics models that predict pressure and flow waveforms after vascular interventions, such as Arterio-Venous Fistula creation for hemodialysis. Prof. Tammo Delhaas serves as a reviewer or member of the editorial board of many journals, and has received grants from, amongst others, the Dutch Heart Foundation, Maastricht UMC+, Province of Limburg, NWO, European Research Council, and the Interuniversity Cardiology Institute of the Netherlands (ICIN).

Department of Biomedical Engineering
Universiteitssingel 50, 6229 ER Maastricht
PO Box 616, 6200 MD Maastricht
Room number: 3.366
T:+31(0)43 388 16 67

  • 2024
    • Neuen, S. M. L., Ophelders, D. R. M. G., Widowski, H., Hütten, M. C., Brokken, T., van Gorp, C., Nikkels, P. G. J., Severens-Rijvers, C. A. H., Sthijns, M. M. J. P. E., van Blitterswijk, C. A., Troost, F. J., LaPointe, V. L. S., Jolani, S., Seiler, C., Pillow, J. J., Delhaas, T., Reynaert, N. L., & Wolfs, T. G. A. M. (2024). Multipotent adult progenitor cells prevent functional impairment and improve development in inflammation driven detriment of preterm ovine lungs. Regenerative Therapy, 27, 207-217. https://doi.org/10.1016/j.reth.2024.03.014
    • Koopsen, T., van Osta, N., van Loon, T., Meiburg, R., Huberts, W., Beela, A. S., Kirkels, F. P., van Klarenbosch, B. R., Teske, A. J., Cramer, M. J., Bijvoet, G. P., van Stipdonk, A., Vernooy, K., Delhaas, T., & Lumens, J. (2024). Parameter subset reduction for imaging-based digital twin generation of patients with left ventricular mechanical discoordination. Biomedical Engineering Online, 23(1), Article 46. https://doi.org/10.1186/s12938-024-01232-0
    • Arts, T., Lyon, A., Delhaas, T., Kuster, D. W. D., van der Velden, J., & Lumens, J. (2024). Translating myosin-binding protein C and titin abnormalities to whole-heart function using a novel calcium-contraction coupling model. Journal of Molecular and Cellular Cardiology, 190, 13-23. https://doi.org/10.1016/j.yjmcc.2024.03.001
    • van der Bruggen, M., Spronck, B., Bos, S., Heusinkveld, M. H. G., Taddei, S., Ghiadoni, L., Delhaas, T., Maria Bruno, R., & Reesink, K. D. (2024). Correction to: Pressure-Corrected Carotid Stiffness and Young's Modulus. American Journal of Hypertension, Article hpae037. https://doi.org/10.1093/ajh/hpae037
    • Konings, T. J. A. J., Delhaas, T., & Mees, B. M. E. (2024). Re: "Thoracic Stent Graft Numerical Models to Virtually Simulate Thoracic Endovascular Aortic Repair. European Journal of Vascular and Endovascular Surgery, (6). Advance online publication. https://doi.org/10.1016/j.ejvs.2024.02.024
    • Ložek, M., Kovanda, J., Kubuš, P., Vrbík, M., Lhotská, L., Lumens, J., Delhaas, T., & Janoušek, J. (2024). How to assess and treat right ventricular electromechanical dyssynchrony in post-repair tetralogy of Fallot: insights from imaging, invasive studies and computational modelling. EP Europace, 26(2), Article euae024. https://doi.org/10.1093/europace/euae024
    • Koopsen, T., Gerrits, W., van Osta, N., van Loon, T., Wouters, P., Prinzen, F. W., Vernooy, K., Delhaas, T., Teske, A. J., Meine, M., Cramer, M. J., & Lumens, J. (2024). Virtual pacing of a patient’s digital twin to predict left ventricular reverse remodelling after cardiac resynchronization therapy. EP Europace, 26(1), Article euae009. https://doi.org/10.1093/europace/euae009
    • van Vliet, L. V., Delhaas, T., Mees, B. M. E., & Snoeijs, M. G. (2024). Response letter. Journal of vascular access. Advance online publication. https://doi.org/10.1177/11297298231218663
  • 2023
    • Tamargo, M., Martínez-Legazpi, P., Espinosa, M. Á., Lyon, A., Méndez, I., Gutiérrez-Ibañes, E., Fernández, A. I., Prieto-Arévalo, R., González-Mansilla, A., Arts, T., Delhaas, T., Mombiela, T., Sanz-Ruiz, R., Elízaga, J., Yotti, R., Tschöpe, C., Fernández-Avilés, F., Lumens, J., & Bermejo, J. (2023). Increased Chamber Resting Tone Is a Key Determinant of Left Ventricular Diastolic Dysfunction. Circulation-Heart Failure, 16(12), E010673. Article 010673. https://doi.org/10.1161/CIRCHEARTFAILURE.123.010673
    • Giudici, A., van der Laan, K. W. F., van der Bruggen, M. M., Parikh, S., Berends, E., Foulquier, S., Delhaas, T., Reesink, K. D., & Spronck, B. (2023). Constituent-based quasi-linear viscoelasticity: a revised quasi-linear modelling framework to capture nonlinear viscoelasticity in arteries. Biomechanics and modeling in mechanobiology, 22(5), 1607–1623. https://doi.org/10.1007/s10237-023-01711-8