Tammo Delhaas

Professor

Tammo Delhaas is Pediatric Cardiologist and Professor of Biomedical Engineering. He obtained his MD at the University of Groningen and received his PhD degree from Maastricht University in 1993 for a thesis on cardiac mechanics. After his training in Pediatrics in Maastricht and Utrecht, he received a Fulbright grant/ICIN-Fellowship and spent one year at the Departments of Bioengineering and Medicine from the UCSD. Thereafter, he trained in Pediatric Cardiology in Aachen and Melbourne. In 2000, he returned to Maastricht as Pediatric Cardiologist and continued his research on the crossroads of (Pediatric) Cardiology, Physiology and Biomedical Engineering. In 2009, he was appointed Professor and Chair of Biomedical Engineering at Maastricht University, where he is involved in projects related to cellular and cardiac mechanics, cardiac pacing, and mathematical modeling of the heart and circulation.

Prof. Tammo Delhaas is heading the CardioVascular System Dynamics Research Group (CVSDRG). With clinical questions regarding (congenital) heart diseases in mind, his research focusses on asynchronous electrical activation, vascular and myocardial structure-function relation, and computer model-assisted diagnosis and treatment of cardiac failure, pulmonary hypertension and congenital heart diseases. Besides standard expertise, CVSDRG uses following techniques/models in which it has expertise of extraordinary quality according to international standards: 1) CircAdapt, a lumped parameter mathematical model of the human heart and circulation that enables real-time simulation of cardiovascular system dynamics in a wide variety of physiological and pathophysiological situations (www.circadapt.org); 2) Finite Element Model of the heart with left and right ventricle, simulating local stress and strain as a function of time with emphasis on adaptation of wall anatomy to local mechanical load; 3) Pulse Wave Propagation and Computational Fluid Dynamics models that predict pressure and flow waveforms after vascular interventions, such as Arterio-Venous Fistula creation for hemodialysis. Prof. Tammo Delhaas serves as a reviewer or member of the editorial board of many journals, and has received grants from, amongst others, the Dutch Heart Foundation, Maastricht UMC+, Province of Limburg, NWO, European Research Council, and the Interuniversity Cardiology Institute of the Netherlands (ICIN).

Department of Biomedical Engineering
Universiteitssingel 50, 6229 ER Maastricht
PO Box 616, 6200 MD Maastricht
Room number: 3.366
T:+31(0)43 388 16 67

  • 2020
    • Lyon, A., Dupuis, L. J., Arts, T., Crijns, H. J. G. M., Prinzen, F. W., Delhaas, T., Heijman, J., & Lumens, J. (2020). Differentiating the effects of beta-adrenergic stimulation and stretch on calcium and force dynamics using a novel electromechanical cardiomyocyte model. American Journal of Physiology-heart and Circulatory Physiology, 319(3), H519-H530. https://doi.org/10.1152/ajpheart.00275.2020
    • Bol, M. E., Beurskens, D. M. H., Delnoij, T. S. R., Roekaerts, P. M. H. J., Reutelingsperger, C. P. M., Delhaas, T., van de Poll, M. C. G., Sels, J-W. E. M., & Nicolaes, G. A. F. (2020). Variability of Microcirculatory Measurements in Critically Ill Patients. Shock, 54(1), 9-14. https://doi.org/10.1097/SHK.0000000000001470
    • van Osta, N., Lyon, A., Kirkels, F., Koopsen, T., van Loon, T., Cramer, M. J., Teske, A. J., Delhaas, T., Huberts, W., & Lumens, J. (2020). Parameter subset reduction for patient-specific modelling of arrhythmogenic cardiomyopathy-related mutation carriers in the CircAdapt model. Philosophical Transactions of the Royal Society A: mathematical Physical and Engineering Sciences, 378(2173), [20190347]. https://doi.org/10.1098/rsta.2019.0347
    • Beurskens, D. M. H., Bol, M. E., Delhaas, T., van de Poll, M. C. G., Reutelingsperger, C. P. M., Nicolaes, G. A. F., & Sels, J-W. E. M. (2020). Decreased endothelial glycocalyx thickness is an early predictor of mortality in sepsis. Anaesthesia and Intensive Care, 48(3), 221-228. https://doi.org/10.1177/0310057X20916471
    • Hermans, B. J. M., Bennis, F. C., Vink, A. S., Koopsen, T., Lyon, A., Wilde, A. A. M., Nuyens, D., Robyns, T., Pison, L., Postema, P. G., & Delhaas, T. (2020). Improving long QT syndrome diagnosis by a polynomial-based T-wave morphology characterization. Heart Rhythm, 17(5), 752-758. https://doi.org/10.1016/j.hrthm.2019.12.020
    • Quicken, S., de Bruin, Y., Mees, B., Tordoir, J., Delhaas, T., & Huberts, W. (2020). Computational study on the haemodynamic and mechanical performance of electrospun polyurethane dialysis grafts. Biomechanics and modeling in mechanobiology, 19(2), 713-722. https://doi.org/10.1007/s10237-019-01242-1
    • Stevens, R. R. F., Donders, W. P., Quicken, S., van de Vosse, F. N., Mess, W. H., Delhaas, T., & Huberts, W. (2020). The Role of One-Dimensional Model-Generated Inter-Subject Variations in Systemic Properties on Wall Shear Stress Indices of Intracranial Aneurysms. Ieee Transactions on Biomedical Engineering, 67(4), 1030-1039. https://doi.org/10.1109/TBME.2019.2928416
    • Quicken, S., Huberts, W., Tordoir, J., van Loon, M., Delhaas, T., & Mees, B. (2020). Computational Modelling Based Recommendation on Optimal Dialysis Needle Positioning and Dialysis Flow in Patients With Arteriovenous Grafts. European Journal of Vascular and Endovascular Surgery, 59(2), 288-294. https://doi.org/10.1016/j.ejvs.2019.08.013
    • Zonnebeld, N., Huberts, W., van Loon, M. M., Delhaas, T., & Tordoir, J. H. M. (2020). Natural Vascular Remodelling After Arteriovenous Fistula Creation in Dialysis Patients With and Without Previous Ipsilateral Vascular Access. European Journal of Vascular and Endovascular Surgery, 59(2), 277-287. https://doi.org/10.1016/j.ejvs.2019.10.010
    • Heinen, S., Gashi, K., van den Heuvel, D., de Vries, J-P., van de Vosse, F., Delhaas, T., & Huberts, W. (2020). A Metamodeling Approach for Instant Severity Assessment and Uncertainty Quantification of Iliac Artery Stenoses. Journal of Biomechanical Engineering-Transactions of the Asme, 142(1), [011010]. https://doi.org/10.1115/1.4044502